A Dual Ca²⁺/DAG Sensor Reports on Ligand Efficacy:

Validation for the M3ACh Receptor

Alonso Cañizal M. C.^{1,2}, Winkler C.^{1,2}, Ziegler N.^{1,2}, Hoffmann C.^{1,2}

¹Rudolf-Virchow-Zentrum, Bio-Imaging-Center - Würzburg, Germany ²University of Würzburg, Institut für Pharmakologie und Toxikologie - Würzburg, Germany

TAKE-HOME MESSAGE

A dual calcium/DAG sensor allows to observe the PLC signaling pathway specifically induced by the activation of the Muscarinic Acetylcholine Receptor 3

and produces a precise and differential response that correlates with the structural changes produced in the receptor upon its activation.

INTRODUCTION

Many GPCR activate the heterotrimeric protein Gq, which leads to the subsequent activation of the phospholipase C (PLC) pathway, producing an increase of calcium due to its release from the intracellular stores and the translocation of the protein kinase C (PKC) to the membrane for binding diacylglycerol (DAG).

METHODS

System: two sensors fused in frame with a 2A peptide sequence in between:

We have validated a fluorescent probe that allows the simultaneous detection of DAG and Ca²⁺ in real time. Using this sensor, we study the specific activation of the M3ACh Receptor, a Gq-coupled GPCR that up-regulates PLC activity.

- DAG sensor: cpGFP fused to the C domains of PKC. Green signal decreases due its translocation to the membrane.
- 2. Ca^{2+} sensor: R-GECO. Red signal increases due to the release of Ca^{2+}

- HEK293 cells were co-transfected with the dual sensor and a CFP-tagged M3AChR.
- Using confocal microscopy, we tested 5 agonists at saturating ligand concentrations: acetylcholine, carbachol, oxotremorine M, oxotremorine and pilocarpine.
- FRET analysis with the 5 ligands: M3AChR sensor with the specific FIAsH binding sequence (CCPGCC) inserted within the N-terminal domain of the 3rd iloop and CFP fused to the receptor C-terminus.

3. Conformational changes produced in M3AChR after the activation with different ligands

4. The conformational change produced in M3AChR correlates with its activity

