Here, we introduce an improved fluorescent cAMP indicator, cADDis, capable of detecting dynamic changes in cAMP concentration in living cells. We have applied cADDis to use in a novel Gi assay that, for the first time, directly reports Gi mediated reductions in cAMP concentration, across a variety of receptors, on standard automated fluorescence plate readers.

cADDis cAMP Indicator
- Genetically encoded, single fluorescence emission
- Packaged in a variety of viral vectors for use in any cell type
- Decrease in fluorescence signal upon binding cAMP
- Easy to use on standard fluorescence microscopes and automated fluorescence plate readers

Real-Time cAMP Detection
- Simple, No cell lysis, No FRET, Fully reversible
- Real-time detection of dynamic cAMP levels
- All data obtained on Biotek Synergy MX plate reader

First ever direct readout of Gi mediated reductions in cAMP
- Tuned expression of constitutively active Gs raises basal levels of cAMP without saturating cADDis2
- No pre-treatment with Gs agonists, Forskolin, or IBMX
- Reveal the activity of Phosphodiesterases

A New Way to Detect Gi Signaling

- **Gi activation: Quinpirole**
- **Gs activation: Isoproterenol (1 nM)**

Direct, Real-Time Gi Detection

Acknowledgements:
Montana Molecular sensors made possible by:
NSF SBIR IIP-1430878
NIH SBIR R44 NS082222
Montana Dept. of Commerce MBRCT: #15-22