GPCR-stimulated cAMP signaling kinetics

Mock report for demonstration purposes

July 20th 2023 Luciana M Leo, PhD Samuel Hoare, PhD Imleo@montanamolecular.com shoare@montanamolecular.com

Table of contents

<u>Summary</u>

Methods

Time course data

Concentration-response data

Data handling and normalization

Curve fitting details

Summary

- cAMP generation stimulated by a GPCR was measured using the cADDis fluorescent cAMP biosensor in live cells for seven hours.
- The response to the endogenous peptide agonist and three small molecule agonists was measured.
- The response to the peptide agonist became fully desensitized, the response returning to baseline.
- By contrast the response to small molecule agonists was sustained, the signal persisting up to seven hours.
- Compound potency (EC₅₀) and E_{max} was quantified for various kinetic parameters. Compound 3 was a partial agonist.

[Note this report employs simulated data]

Methods

- □ HEK293T cells (ATCC) transduced with the GPCR and Green Upward cADDis biosensor.
- cAMP: Fluorescence measured on a <u>BioTek Neo2</u> and agonist injection performed on <u>Integra Viaflo 384</u>.
 Baseline measured for 15 min at 45 sec intervals, agonist added, and fluorescence measured for another 7 hr.
- □ Compounds and controls:
 - Compounds serially-diluted in 100% DMSO in a low-binding plate, 1/2 log dilution factor.
 - Compounds diluted in DPBS then transferred to assay plate (0.3% DMSO on assay plate).
 - Negative control: Vehicle-only treated samples.
- □ Time course data <u>normalized</u> to baseline fluorescence and vehicle <u>subtracted</u>.
- □ Time course data analyzed with <u>kinetic equations</u> and dose response of fitted parameters determined.
- \Box Time course data shown as mean \pm SEM from 2 technical replicates.

Time course data

Time course curve shape – endogenous agonist

• cAMP rises to a peak in response to endogenous agonist, then declines.

- Response declines completely back down to baseline level.
- This decline is probably due to receptor desensitization ^{1,2}.

Front Cell Neurosci 2022, 15:814547
 Sci Report 2020 10: 12263

MM

Montana Molecular

Curve fitting – endogenous agonist

- Data for active concentrations fit to a rise and fall to baseline curve.
- Data for inactive concentrations fit to a straight line curve.
- Parameters quantified include peak cAMP, cAMP generation rate (initial rate), and decline rate.
- Data analysis was performed using GraphPad Prism, utilizing the Pharmechanics plug in of time course equations ¹⁻⁴. See <u>here</u> for details of curve fitting procedure.
- 1. Front Cell Neurosci 2022, 15:814547
- 2. Sci Report 2020 10: 12263
- 3. <u>www.pharmechanics.com/time-course-tool-pack</u>
- 4. https://youtu.be/_Pb7Sq6IZIY

Time course curve shape – test compounds

- cAMP rises to a peak in response to endogenous agonist, then declines.
- Response declines down to a level that
 is above baseline, indicating persistent signaling.
- This persistent signaling could be due to resesensitization of the receptor, or signaling by internalized receptors ^{1,2}.

1. <u>Front Cell Neurosci 2022, 15:814547</u> 2. <u>Sci Report 2020 10: 12263</u>

Curve fitting – endogenous agonist

Three time course shapes were observed, dependent on the agonist concentration.

- 1. Rise and fall to steady-state curve (highest concs.)
 - . Rise to steady-state curve (intermediate concs.)
- ,3. Straight line (lowest, inactive concs.)

For active concentrations, data were fit to both the rise and fall to steady-state curve and rise to steady-state curve. The preferred fit was then determined using a partial F-test – see <u>here</u>.

Data analysis was performed using GraphPad Prism, utilizing the Pharmechanics plug in of time course equations ¹⁻⁴. See <u>here</u> for details of curve fitting procedure.

- 1. Front Cell Neurosci 2022, 15:814547
- 2. Sci Report 2020 10: 12263
- 3. <u>www.pharmechanics.com/time-course-tool-pack</u>
- 4. https://youtu.be/_Pb7Sq6IZIY

Parameters quantified

Concentration response data

Peak cAMP concentration response

Compound	EC ₅₀ (nM)	E _{max} (% Cmpd 1 E _{max} ^A)
Endogenous agonist	0.35	91
Compound 1	2.1	100
Compound 2	4.9	91
Compound 3	1.6	46

- The endogenous agonist is the most potent ligand (EC₅₀ 0.35 nM).
- Compounds 1 and 3 are the most potent small molecules (EC₅₀ 2.1 and 1.6 nM).
- Compound 3 is a partial agonist.

Sustained cAMP concentration response

Compound	EC ₅₀ (nM)	E _{max} (% Cmpd 1 E _{max} ^A)
Endogenous agonist	Not detected	Not detected
Compound 1	0.96	100
Compound 2	2.1	89
Compound 3	0.50	44

- No sustained signaling detected for the endogenous agonist.
- Compound potency slightly higher than for peak cAMP (compare with previous page).
- Compound 3 is a partial agonist.

cAMP signal generation rate (initial rate)

cAMP generation rate

Compound	EC ₅₀ (nM)	E _{max} (% Cmpd 1 E _{max} ^A)
Endogenous agonist	0.30	100
Compound 1	2.0	100
Compound 2	5.4	100
Compound 3	1.8	46

- Maximum cAMP generation rate the same for endogenous agonist, Compound 1 and Compound 2.
- For Compound 3, maximum cAMP generation rate is lower, indicating partial agonism involves a reduced cAMP generation rate by the Compound 3-bound receptor.

cAMP decline half time

100₇ cAMP decline half time (min) 80-Endoegnous agonist ----Compound 1 60-Compound 2 -Compound 3 40-20-0--12 -5 -11 -10 -9 -8 -7 -6 log[Compound] (log M)

cAMP decline half time

Compound	EC ₅₀ (nM)	E _{max} (min)
Endogenous agonist	1.3	30
Compound 1	9.5	56
Compound 2	27	63
Compound 3	17	87

- Decline for small molecules slower than decline for endogenous ligand (higher maximum half time).
- Decline for partial agonist Compound 3 slightly slower than that for full agonists Compounds 1 and 2.

Data handling and normalization

Normalizing to baseline

Subtracting vehicle

Linear regression performed for vehicle-treated cells. Calculated vehicle Y value from linear regression for each time point subtracted.

X axis adjusted to time after agonist addition.

Prism steps for data normalization

meters: Remove Baseline and Colum	n Math
efinition of baseline	
O Selected column(s) Every other	data set (column): 2nd, 4th, 6th, 🗸 🗸
Assume the baseline is linear with	X, so use values predicted from the regression line.
Selected row(s)	
◯ First row	
O Last row	
● Mean of <u>fi</u> rst 20 ≑ rows an	id last 0 ≑ rows.
Remove baseline(s) from the result	ts .
alculation	
O Difference: Value - Baseline	O Percent: 100*Value/Baseline
O Sum: Value + Baseline	O Fractional difference: (Value - Baseline)/Baseline
O Product: Value* Baseline	O Percentage difference: 100* (Value - Baseline)/Baseline
Ratio: Value/Baseline	
ubcolumns	
Repeated measures. When compute the Y2 subcolumn.	ting results for the Y2 subcolumn, only consider baseline values in
O Replicates. No matching. Average	the baseline replicates and do calculations with the average.
O Ignore subcolumns. Average all rep	plicates, and only do calculations with the mean values.
low to label the results columns	
Column shortcuts (A - B)	~
ew graph	
Create a new graph of the results	

ameters: Remove Baseline and Colum	n Math
Definition of baseline	
Selected column(s) Data Set M	~
Assume the baseline is linear with	X, so use values predicted from the regression line.
O Selected row(s)	
First row	
O Last row	
Mean of first 3 🗘 rows and	d last 3 🜩 rows.
Remove baseline(s) from the result	S
Calculation	
Difference: Value - Baseline	○ Percent: 100*Value/Baseline
O Sum: Value + Baseline	Fractional difference: (Value - Baseline)/Baseline
O Product: Value* Baseline	O Percentage difference: 100* (Value - Baseline)/Baselin
ORatio: Value/Baseline	
Subcolumns	
Repeated measures. When compute the Y2 subcolumn.	ing results for the Y2 subcolumn, only consider baseline values in
Replicates. No matching. Average t	he baseline replicates and do calculations with the average.
O Ignore subcolumns. Average all rep	licates, and only do calculations with the mean values.
How to label the results columns	
Value column title only	~
New graph	

Curve fitting details

Prism analysis for endogenous agonist

arameters: Nonlinear Regression	× Parameters: Nonlinear Regression	× Parameters: Nonlinear Regression
Model Method Compare Constrain Initial values Range Output Confidence Diagnostics Flag	Model Method Compare Constrain Initial values Range Output Confidence Diagnostics Flag	Model Method Compare Constrain Initial values Range Output Confidence Diagnostics Fla
Choose an equation	Outliers	Parameter Name Constraint Type Value Hook
Choose an equation Exponential Exponential Choose an equation Exponential Exponential Choose an equation Exponential Choose and equation Exponential Choose and equation Exponential Choose and equation Exponential Choose an equation Exponential Choose and equation Exponential Choose an equation Expo	Outliers No special handing of outiers Detect and eliminate outliers Report the presence of outiers Image: Image: Ima	Parameter Name Constraint Type Value Hook X0 Must be greater than 20 3 Baseline No constraint 0 3 K1 No constraint 0 3 K2 Must be greater than 0 3 K2 Must be greater than 0 3 Constraint 0 3 3
Interpolate	Ugny consider the mean Y value of each point	with the greater than 1 times v
Interpolate unknowns from standard curve. Confidence interval: None Learn Cancel OK	Learn Cancel OK	Learn Cancel O

Select I Endoge Endoge	Data Set enous agonist:A:10						
Endoge Endoge	enous agonist:A:10					Select All	^
Endoge		0					
the second second	enous agonist:B:32						
Endoge	enous agonist:C:10 enous anonist:D:3	2					
Endoge	enous agonist:E:1.0	0					
Endoge	enous agonist:F:0.3	32					4
in select	t coueral data coto	press Coptr	ol or Shift while	celecting			1000
U SEJECT	Parameter Name	press corre	Choose Au	tomatically	Toital Value	Hook	
	YO XO		CIUOSE AU				
	AD.		L	_	20	0	
	Baseline			3	-0.019739804	154 5	
	Initial_rate			3	0.013777052	517 5	
	К1			3	0.045413260	572 5	
	K2		E	2	0.001362397	820 3	

arameters: Nonlinear R	egression						
Model Method Comp	oare Constrain	Initial values	Range	Output	Confidence	Diagnostics	Flag
Confidence interval	s (CI) of paran	neters					
Confidence level:	95% ~						
Output Format:	Range ("1.23 t	0 4.567	~				
O Asymmetrical (profile-likelihood)	cī					
Recommended	because they an	e more accurat	e. Can be	e slow.			
Compute et	ven when the fit i	s ambiguous or	unstable	and the	CIs would be	difficult to inte	rpret.
Symmetrical (a)	symptotic) appro	ximate CI					100510
Less accurate	so not recommen	ded. Matches	Prism 1-6	and most	programs, Fa	ster to calcula	te.
Show SE of	naramatere						2012
Confidence or predi	ction bands						
Plot confidence/p	rediction bands						
Confidence level:	95%						
(®) Confidence ba	nds						
Confidence ba	nds show you the	likely location	of the TR	UE curve.			
O Prediction ban	ds						
Prediction ban	ts show you the l	ikely location of	Eaddition	al data no	ints.		
Unstable paramete	rs and ambigu	ous fits					
O Identify "unstable	parameters (re	commended).					
O Identify "ambiguo	us" fits. Matches	Prism 8.1 and	earlier.				
Neither, Just shore	w the best-fit val	ues even when	the fit is	problema	tic.		
Neither, Just shore	w the best-fit val	ues even when	the fit is	problema	tic.		

х

Cancel OK

Prism analysis for Compounds 1-3

Parameters: Nonlinear Regression X	Parameters: Nonlinear Regression X	Parameters: Nonlinear Regression
Parameters: Nonlinear Regression × Model Method Compare Constrain Initial values Range Output Confidence Diagnostics Flag Choose an equation Binding - Kinetics Binding - Kinetics - Inhibition Enzyme kinetics - Velocity as a function of substrate Exponential Eines Polynomial Gaussian Sine waves	Parameters: Nonlinear Regression X Model Method Compare Constrain Initial values Range Output Confidence Diagnostics Flag Outliers Obstect and eliminate outliers Oreate a table of clean data (with outliers removed) Fitting method East squares regression. Used most commonly. O Robust regression. Outliers have little inpact. 	Parameters: Nonlinear Regression Model Method Compare Constrain Initial values Range Output Confidence Diagnostics Flag What question are you asking? No comparison For each data set, which of two equations (models) fits best? Do the best-fit values of selected unshared parameters differ between data sets? For each data set, does the best-fit value of a parameter differ from a hypothetical value? Does one curve adequately fit all the data sets? Comparison method for each data set, for each data sets?
	Kotust regression. Y values are counts of objects or events. On't fit the curve. Instead plot the curve defined by the initial values of the parameters. Convergence criteria How strict Medium I Automatically switch to strict convergence when needed Maximum number of iterations Weighting method No weighting. Minimize the sum-of-squares of the distances of the points from the curve. Choose when you expect the average distance between points and curve to be unrelated to the value of Y. Weight by 1/V^2. Minimize the sum of the squares of the relative distance of the points from the curve.	Akake's Information Criterion (ALCC). Select the model that is If one fit is ambiguous or fagged, choose the other without formal comparison Select the simpler model unless the P value is less than U.05 Choose the second equation (Pharmechanics] Fall-and-rise equations (Pharmechanics] Rise-and-fall equations (Pharmechanics] Rise-and-fall to baseline time course (Pharmechanics) Rise-and-fall to baseline time course
Use for time course experiment in which effect is initiated after a baseline period. X0 initial value might need to be entered manually. X0 [Pharmechanics] Baseline then rise to steady state time course Numerical derivatives Interpolate Interpolate unknowns from standard curve. Confidence interval: None: M	Choose when you expect the average distance between points and curve to be proportional to Y. Weight by $1/Y$ $K = 2$ Replicates (a) Consider each replicate Y value as an individual point Quily consider the mean Y value of each point	Praimechanics Baseline then rise-and-fall to steady state with drift [Pharmechanics] Baseline then rise-and-fall to steady state with drift For each data set, compare the fit of "[Pharmechanics] Baseline then rise to steady state time course" (chosen on the Model tab) with the fit of a second model (which you choose above). Prism will fit both models to your data and compare them. Note that if you choose to compare with the extra sum-of-squares F test, the models must be nested - one model must be a special case of the other. If your models are not nested, choose the AICc comparison.
Learn Cancel OK	Learn Cancel OK	Learn Cancel OK

ation 1: [Pharm	echanics] Baseline then rise to steady sta	ate time course		Colorida Colo		C-1		ส
Parameter Name	Constraint Type	Value	Hook	Select Data Set		200	ect All	
XO	Must be greater than	20	3	Compound 1:B:100			_	
Baseline	No constraint			Compound 1:C:32				٩.
SteadyState	Must be access than	0		Compound 1:D:10 Compound 1:E:3.2				
	Musi de greater trian 🔍	0	0	Compound 1-E-1			*	1
ĸ	Must be greater than \checkmark	0	5	To select several data sets, press C	Control or Shift while selecting.			
				Equation 1: [Pharmechanics] B	aseline then rise to steady s	tate time course		2
nstrain one paramet	ter relative to another			Parameter Name	Choose Automatically	Initial Value	Hook	
	✓ must be greater than 1 time	es	~	XO		44.04	3	
	✓ must be greater than 1 tim ✓ must be greater than 1 tim	es es	× ×	X0 Baseline		44.04 -0.01151020247	1	
uation 2: [Pharm	v must be greater than 1 tim v must be greater than 1 tim echanics] Baseline then rise-and-fall to st	es es teady state time	v v course	X0 Baseline SteadyState	2 2 2	44.04 -0.01151020247 0.657595211551	5	
uation 2: [Pharm-	must be greater than 1 tim must be greater than 1 tim must be greater than 1 tim echanics] Baseline then rise-and-fall to st Constraint Type	es teady state time Value	course	X0 Baseline SteadyState		44.04 -0.01151020247 0.657595211551		
uation 2: [Pharme Parameter Name X0	v must be greater than 1 tim must be greater than 1 tim echanics] Baseline then rise-and-fail to st Constraint Type Must be greater than v	es teady state time Value 20	v course	X0 Baseline SteadyState K	2 2 2 2	44.04 -0.01151020247 0.657595211551 0.122508456982	5	
Parameter Name X0 Baseline	w must be greater than 1 tim w must be greater than 1 tim echanics] Baseline then rise-and-fall to st Constraint Type Must be greater than v No constraint v	es teady state time Value 20	course	X0 Baseline SteadyState K Equation 2: [Pharmechanics] B	☑ ☑ ☑ aseline then rise-and-fall to	44.04 -0.01151020247 0.657595211551 0.122508456982 steady state time of	J J J Ourse	
Parameter Name X0 Baseline SteadyState	w must be greater than 1 tim w must be greater than 1 tim echanics] Baseline then rise-and-fall to st Constraint Type Must be greater than ~ No constraint ~ Must be greater than ~ Must be greater than ~	es teady state time Value 20 0	Course Hook A	X0 Baseline SteadyState K Equation 2: [Pharmechanics] B Parameter Name	aseline then rise-and-fall to	44.04 -0.01151020247 0.657595211551 0.122508456982 steady state time of Initial Value	S S S S Nurse	
uation 2: [Pharma Parameter Name X0 Baseline SteadyState D	w must be greater than 1 tim w must be greater than 1 tim echanics] Baseline then rise-and-fall to st Constraint Type Must be greater than v No constraint v Must be greater than v Must be greater than v Must be greater than v	es value	Course	X0 Baseline SteadyState K Equation 2: [Pharmechanics] B Parameter Name X0	aseline then rise-and-fall to Choose Automatically	44.04 -0.01151020247 0.657595211551 0.122508456982 steady state time of Initial Value 44.04	S S S Hook A	
uation 2: [Pharmw Parameter Name X0 Baseline SteadyState D	✓ must be greater than 1 tim ✓ must be greater than 1 tim echanics] Baseline then rise-and-fall to st Constraint Type Must be greater than ✓ No constraint ✓ Must be greater than ✓ Must be greater than ✓ Must be greater than ✓	es value 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Course	X0 Baseline SteadyState K Equation 2: [Pharmechanics] B Parameter Name X0 Baseline	aseline then rise-and-fall to Choose Automatically	44.04 -0.01151020247 0.657595211551 0.122508456982 steady state time of Initial Value 44.04 -0.01151020247	S S Xurse	
Parameter Name X0 Baseline SteadyState D vi nstrain one parameter	v must be greater than 1 tim v must be greater than 1 tim echanics] Baseline then rise-and-fall to st Constraint Type Must be greater than V No constraint v Must be greater than v Must be greater than v must be greater than v	es es Value 20 0 0	Course Hook A J J J J J V	X0 Baseline SteadyState K Equation 2: [Pharmechanics] B Parameter Name X0 Baseline SteadyState	aseline then rise-and-fall to Choose Automatically	44.04 -0.01151020247 0.657595211551 0.122508456982 steady state time of Initial Value 44.04 -0.01151020247 0.328797605775	S S ourse Hook A	
Parameter Name X0 Baseline SteadyState D x1 mstrain one parameter K1	v must be greater than 1 tim v must be greater than 1 tim echanics] Baseline then rise-and-fall to st Constraint Type Must be greater than V No constraint v Must be greater than v Must be greater than v must be greater than v	es	Course Hook A J J J V V	X0 Baseline SteadyState K Equation 2: [Pharmechanics] B Parameter Name X0 Baseline SteadyState D	aseline then rise-and-fall to Choose Automatically	44.04 -0.01151020247 0.657595211551 0.122508456982 steady state time of Initial Value 44.04 -0.01151020247 0.328797605775 3	S S Nurse	

	ers: Nonlir	near Re	gress	sion							×
Model	Method	Compa	sre	Constrain	Initial values	Range	Output	Confidence	Diagnostics	Flag	
Confic	dence int Calculate C	ervals I of par	(CI)	of param	eters						
C	onfidence	level:	95%	v							
0	utput For	mat:	Rang	je ("1.23 to	4.567	~					
C	Asymme	trical (p	rofile	-likelihood)	CI						
1	Recomm	ended b	becau	se they are	e more accurat	e. Can be	e slow.				
	Comp	pute eve	en wh	en the fit i	s ambiguous or	unstable	and the	CIs would be a	difficult to inte	rpret.	
(Symmet	rical (as	ympt	otic) appro	ximate CI						
	Less acc	curate s	o not	recommen	ded. Matches R	Prism 1-6	and most	programs. Fa	ster to calcula	te.	
	Show	SEofo	param	eters							
Confid	dence or	predic	tion	bands							
DP	lot confide	ence/pre	edictio	on bands							
c	onfidence	level:	95%	. W							
(Confider	nce ban	ds								
	Confider	nce ban	ds shi	ow you the	likely location	of the TR	UE curve.				
	Predictio	n hand	e l								
	Predictio	n bande	c chos	a you the l	ively location of	Faddition	al data po	ints.			
Unsta	ble para	meter	s and	l ambigue	ous fits						
0.	dentify "ur	nstable"	para	meters (re	commended).						
01	dentify "ar	mbiguou	s" fits	Matchae	Prism 8.1 and	earlier.					
OI				s. Plactics							

23

Learn Cancel OK

 \times